Higher Order Sensitivities for Solving Nonlinear Two-Point Boundary-Value Problems
نویسندگان
چکیده
In this paper, we consider new computational approaches for solving nonlinear TwoPoint Boundary-Value Problems. The sensitivity calculations required in the solution utilize the automatic differentiation tool OCEA (Object Oriented Coordinate Embedding Method). OCEA has broad potential in this area and many other areas since the partial derivative calculations required for solving these problems are automatically computed and evaluated freeing the analyst from deriving and coding them. In this paper, we demonstrate solving nonlinear Two-Point Boundary Value Problems by shooting and direct methods using automatic differentiation. We demonstrate standard first-order algorithms and higherorder extensions. Additionally, automatic generation of co-state differential equations and secondand higher-order midcourse corrections are considered. Optimization of a sample Low-thrust, Mars-Earth trajectory is considered as an example. Computational issues related to domain of convergence and rate of convergence will be detailed.
منابع مشابه
Higher order multi-point fractional boundary value problems with integral boundary conditions
In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...
متن کاملAn ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems
As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...
متن کاملSinc-Galerkin method for solving a class of nonlinear two-point boundary value problems
In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...
متن کاملAn Effective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument
Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...
متن کاملAn efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004